Blood perfusion in osteomyelitis studied with [15O]water PET in a juvenile porcine model
نویسندگان
چکیده
BACKGROUND Osteomyelitis is a serious disease which can be difficult to treat despite properly instituted antibiotic therapy. This appears to be related at least partly to degraded vascularisation in the osteomyelitic (OM) lesions. Studies of perfusion in OM bones are, however, few and not quantitative. Quantitative assessment of perfusion could aid in the selection of therapy. A non-invasive, quantitative way to study perfusion is dynamic [15O]water positron emission tomography (PET). We aim to demonstrate that the method can be used for measuring perfusion in OM lesions and hypothesize that perfusion will be less elevated in OM lesions than in soft tissue (ST) infection. The study comprised 11 juvenile pigs with haematogenous osteomyelitis induced by injection of Staphylococcus aureus into the right femoral artery 1 week before scanning (in one pig, 2 weeks). The pigs were dynamically PET scanned with [15O]water to quantify blood perfusion. OM lesions (N = 17) in long bones were studied, using the left limb as reference. ST lesions (N = 8) were studied similarly. RESULTS Perfusion was quantitatively determined. Perfusion was elevated by a factor 1.5 in OM lesions and by a factor 6 in ST lesions. CONCLUSIONS Blood perfusion was successfully determined in pathological subacute OM lesions; average perfusion was increased compared to that in a healthy bone, but as hypothesized, the increase was less than in ST lesions, indicating that the infected bone has less perfusion reserve than the infected soft tissue.
منابع مشابه
Kinetic Modelling of Infection Tracers [18F]FDG, [68Ga]Ga-Citrate, [11C]Methionine, and [11C]Donepezil in a Porcine Osteomyelitis Model
Introduction Positron emission tomography (PET) is increasingly applied for infection imaging using [18F]FDG as tracer, but uptake is unspecific. The present study compares the kinetics of [18F]FDG and three other PET tracers with relevance for infection imaging. Methods A juvenile porcine osteomyelitis model was used. Eleven pigs underwent PET/CT with 60-minute dynamic PET imaging of [18F]FD...
متن کاملTumor blood flow measured by PET dynamic imaging of first-pass 18F-FDG uptake: a comparison with 15O-labeled water-measured blood flow.
UNLABELLED PET molecular imaging of 15O-labeled water is the gold standard for measuring blood flow in humans. However, this requires an on-site cyclotron to produce the short-lived 15O tracer, which is cost-prohibitive for most clinical PET centers. The purpose of this study was to determine if the early uptake of 18F-FDG could be used to measure regional blood flow in tumors in the absence of...
متن کاملParametric imaging of myocardial blood flow with 15O-water and PET using the basis function method.
UNLABELLED Regional myocardial blood flow (MBF) can be measured with 15O-water and PET using the 1-tissue-compartment model with perfusable tissue fraction, which provides an MBF value that is free from the partial-volume effect. Studies with 15O-water have several advantages, such as the ability to repeat a scan. However, because of the short scanning time and the small distribution volume of ...
متن کاملPharmacodynamic analysis of tumour perfusion assessed by 15O-water-PET imaging during treatment with sunitinib malate in patients with advanced malignancies
BACKGROUND We evaluated pharmacodynamic changes in tumour perfusion using positron emission tomography (PET) imaging with 15O-water to assess biological response to sunitinib, a multitargeted tyrosine kinase inhibitor. METHODS Patients with advanced malignancies received sunitinib 50 mg/day orally, once daily for 4 weeks on treatment, followed by 2 weeks off treatment, in repeated 6-week cycl...
متن کامل68Ga-labeled Siglec-9 peptide for the imaging of acute lung inflammation: a pilot study in a porcine model of acute respiratory distress syndrome
There is an unmet need for noninvasive, specific and quantitative imaging of inherent inflammatory activity. Vascular adhesion protein-1 (VAP-1) translocates to the luminal surface of endothelial cells upon inflammatory challenge. We hypothesized that in a porcine model of acute respiratory distress syndrome (ARDS), positron emission tomography (PET) with sialic acid-binding immunoglobulin-like...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017